2025 SURF项目展示——AI篮球视频分析系统来了!
作者:微信文章AIAC
AI篮球视频分析
系统来了!
2025 SURF项目展示
AIAC
你是否想过,AI能否实时了解比赛中球员的位置和队伍布局?我们的团队开发了一套基于YOLOv11的篮球视频分析系统,可自动处理比赛视频,为教练、解说和球迷提供全新视角。
系统已实现功能
聚焦科技与未来的核心主题,精准锚定科技创新驱动发展的核心逻辑。科技创新是突破发展瓶颈、开拓未来赛道的核心动力。
球员&裁判检测:精准识别场上每位球员和裁判
跟踪:使用DeepSORT追踪,尽量保持身份一致性,重建球员轨迹
队伍分类:通过颜色特征半人工精校自动高精度区分两队球员
骨架估计:集成RTMPose-S,预测球员关键关节点
投影可视化:将球员位置映射到篮球场平面,直观观察队伍布局
实验成果
在真实比赛视频中,系统检测准确率达到98%,队伍分类准确率95%,展示了稳定且高效的分析能力。生成的可视化视频和JSON数据可用于进一步研究或教学示范。
未来预期
自动识别球员动作,如投篮、运球
高级战术分析,辅助教练决策和比赛解说
图1:骨架模型
图2:队伍分类
图3:2D 投影可视化
学生:焦英博、苗一诺、张文婧、苏泓铭、黄皓洋
指导老师:周冕博士
Scroll up to read
AI-Powered Basketball Video Analysis!
Ever wondered if AI can understand player positions and team layouts in real time? Our team developed a YOLOv11-based basketball video analysis system, which automatically analyzes game videos, providing a new perspective for coaches, commentators, and fans.
Current Features:
Player & Referee Detection: Accurate identification of all players and referees on the court
Tracking: DeepSORT maintains consistent IDs, reconstructing player trajectories
Team Classification: Automatically and precisely distinguish the two teams of players through color feature semi-artificial fine-tuning.
Pose Estimation: RTMPose-S predicts key body joints for each player
2D Court Projection: Map player positions onto a basketball court plane for intuitive team layout visualisation
Results:
On real game videos, the system achieved 98% detection accuracy and 95% team classification accuracy, demonstrating stable and efficient performance. The visualised videos and structured JSON outputs support further research or teaching applications.
Future Plans:
Automatically recognise player actions such as shooting or dribbling
Advanced tactical analysis to support coaching decisions and game commentary
页:
[1]