找回密码
 注册

Sign in with Twitter

It's what's happening?

微信登录

微信扫一扫,快速登录

查看: 694|回复: 1

“人造太阳”:挡不住的诱惑

[复制链接]
发表于 2004-10-4 19:02 | 显示全部楼层 |阅读模式
50多年来的热核聚变研究一直围绕着一个主题,就是要实现可控的核聚变反应,造出一个人造太阳,一劳永逸地解决人类的能源之需。

    地球上的化石燃料已经所剩无几,人类如何找到理想的替代能源?50多年来的热核聚变研究一直围绕着一个主题,那就是要实现可控的核聚变反应,造出一个人造太阳,一劳永逸地解决人类发展的能源之需。国际热核聚变试验堆的即将启动为人类实现这个梦想带来了曙光。再用50年,人们能看到人造太阳吗?

    万物生长靠太阳,人类生存自然也离不开太阳。我们生火煮饭的柴草来自太阳,水力发电来自太阳,汽车里燃烧的汽油来自太阳……实际上,迄今为止,除了核能以外,我们使用的所有能源几乎都来自太阳。太阳像所有的恒星一样进行着简单的热核聚变,向外无休止地辐射着能量。

    我们现今所使用的能源,有些直接来自太阳,有些是太阳能转化的能源,像水能、风能、生物能,有些是早期由太阳能转化来的一直储存在地球上的能源,像煤炭、石油这样的化石燃料。人类社会发展到今天,仅靠太阳给予的可用能源已经不够用了。人类能源消耗快速增加,水能的开发几近到达极限,风能、太阳能无法形成规模。我们今天使用的主要能源是化石燃料,再有100多年即将用尽。人们还抱怨化石燃料对大气造成了污染,增加了温室气体。要知道它们是太阳和地球用了上亿年才形成的,但只够人类使用三四百年,而且它们是不可再生的。另外,煤炭、石油等是人类重要的自然资源,作为燃料烧掉是非常可惜的。人们无不担心,煤和石油烧完了,而其他能源又接替不上该怎么办?能源危机开始困扰着人类,人们一直在寻找各种可能的未来能源,以维持人类社会的持续发展。

    造一个太阳

    细心的人会发现,在元素周期表中,虽然元素是由质子和中子成对增加依次构成的,但是原子的重量却不是按质子和中子的增加而等量增加的。在较轻的原子中,质子和中子的重量偏重,如果两个轻的原子合成一个重原子,两个轻原子的原子量之和往往重于合成的重原子。同样,在较重的原子中,质子和中子的重量也偏重,一个重原子分裂为两个轻原子,重原子的原子量一般重于两个轻原子之和。只是在铁元素附近的原子中,质子和中子的重量偏轻。由此可见,在原子核反应中,质量是不守恒的,即出现了所谓的质量亏损。这些质量到哪里去了呢?按照爱因斯坦的质能关系公式E=mc2,亏损的质量转换为能量,由于c2是个巨大的系数,很小的质量就可释放出巨大的能量。科学家正是基于这一点,利用重金属的核裂变制造出了原子弹,利用轻元素的核聚变制造出了氢弹。

    原子弹和氢弹的巨大威力令人惧怕,同时也让人们兴奋,因为原子中蕴藏的能量太大了,能否利用这种能源是人们自然想到的问题。原子弹和氢弹中的巨大能量是在瞬间释放出来的,而要作为常规能源使用,就必须实现可控制的核裂变和核聚变。对于核裂变来说,控制起来相对比较容易,裂变核电站早已经实现商业运行。但能用来产生核裂变的铀235等重金属元素在地球上含量稀少,而且常规裂变反应堆会产生长寿命的放射性较强的核废料,这些因素限制了裂变能的发展。

    对人们来说,最具诱惑力的自然是核聚变,它的单位质量产生的能量比核裂变还要大几倍。实际上,宇宙中最常见的就是氢元素的聚变反应,所有的恒星几乎都在燃烧着氢,因为氢是宇宙中最丰富的元素。氢的聚变反映在太阳上(还有少量其他核聚变)已经持续了近50亿年,至少还可以再燃烧50亿年。氢在地球上也是非常丰富的,每个水分子中都有2个氢原子,但最容易实现的聚变反应是氢的同位素—氘与氚的聚变(氢弹就是这种形式的聚变)。氘和氚发生聚变后,2个原子核结合成1个氦原子核,并放出1个中子和17.6兆电子伏特能量。就氘来说,它是海水中重水(水分子为H2O,重水为D2O,只占海水中的一小部分)的组成元素,海水中大约每6500个氢原子中有1个氘原子。每升水约含30毫克氘(产生的聚变能量相当于300升汽油),其储量就多达40万亿吨。一座1000兆瓦的核聚变电站,每年耗氘量只需304公斤,海水中的氘足够人类使用上百亿年,这就比太阳的寿命还要长了,更不要说再使用氢了。另外,除氚具有放射性危险之外,氘-氚聚变反应不产生长寿命的强放射性核废料,其少量放射性废料也很快失去放射性。氘-氘反应没有任何放射性。可以说氢及其同位素的聚变反应是一种高效清洁的能源,而且真正是用之不绝。既然恒星上都在进行着这样的核聚变,地球上也不缺这种核聚变的原料,只要实现可控的核聚变,就可以造出一个供人们永久使用的“太阳”。实际上,自从人们揭开太阳燃烧的秘密以来,就一直希望模仿太阳在地球上实现核聚变从而为人类提供无尽的能源。尽管50多年过去了,人们只见到了氢弹的爆炸,而没有看到一座核聚变发电站的出现,但它诱人的前景依然是人们心中一个割舍不去的梦。

    比想象的要难

    在太阳上由于引力巨大,氢的聚变可以自然地发生,但在地球上的自然条件下却无法实现自发的持续核聚变。在氢弹中,爆发是在瞬间发生并完成的,可以用一个原子弹提供高温和高压,引发核聚变,但在反应堆里,不宜采用这种方式,否则反应会难以控制。

    根据核聚变发生的机理,要实现可控制的核聚变实际上比造个太阳要难多了。我们知道,所有原子核都带正电,两个原子核要聚到一起,必须克服静电斥力。两个核之间靠得越近,静电产生的斥力就越大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力(强作用力)才会伸出强有力的手,把它们拉到一起,从而放出巨大的能量。要使它们联起手来并不难,难的是既要让它们有拉手的机会又不能让他们过于频繁地拉手。要使它们有机会拉手,就要使粒子间有足够的高速碰撞的机会,这可以增加原子核的密度和运动速度。但增加原子核的密度是有限制的,否则一旦反应加速,自身放出的能量会使反应瞬间爆发。据计算,在维持一定的密度下,粒子的温度要达到1~2亿度才行,这要比太阳上的温度(中心温度1500万度,表面也有6000度)还要高许多。但这样高的温度拿什么容器来装它们呢?

    这个问题并没有难倒科学家,20世纪50年代初,苏联科学家塔姆和萨哈罗夫提出磁约束的概念。苏联库尔恰托夫原子能研究所的阿奇莫维奇按照这样的思路,不断进行研究和改进,于1954年建成了第一个磁约束装置。他将这一形如面包圈的环形容器命名为托卡马克(tokamak)。托卡马克是“磁线圈圆环室”的俄文缩写,又称环流器。这是一个由封闭磁场组成的“容器”,像一个中空的面包圈,可用来约束电离了的等离子体。我们知道,一般物质到达10万度时,原子中的电子就脱离了原子核的束缚,形成等离子体。等离子体是由带正电的原子核和带负电的电子组成的气体,整体是电中性的。在磁场中,它们的每个粒子都是显电性的,带电粒子会沿磁力线做螺旋式运动,所以等离子体就这样被约束在这种环形的磁场中。这种环形的磁场又叫磁瓶或磁笼,看不见,摸不着,也不接触有形的物体,因而也就不怕什么高温了,它可以把炙热的等离子体托举在空中。

    人们本来设想,有了“面包炉”,只需把氘、氚放入炉内加火烤制,把握好火候,能量就应该流出来。其实不然,人们接着遇到的麻烦是,在加热等离子体的过程中能量耗散严重,温度越高,耗散越大。一方面,高温下粒子的碰撞使等离子体的粒子会一步一步地横越磁力线,携带能量逃逸;另一方面,高温下的电磁辐射也要带走能量。这样,要想把氘、氚等离子体加热到所需的温度,不是件容易的事。另外,磁场和等离子体之间的边界会逐渐模糊,等离子体会从磁笼里钻出去,而且当约束等离子体的磁场一旦出现变形,就会变得极不稳定,造成磁笼断开或等离子体碰到聚变反应室的内壁上

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?注册 微信登录

×
Die von den Nutzern eingestellten Information und Meinungen sind nicht eigene Informationen und Meinungen der DOLC GmbH.
发表于 2004-10-5 09:41 | 显示全部楼层
Die von den Nutzern eingestellten Information und Meinungen sind nicht eigene Informationen und Meinungen der DOLC GmbH.
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册 微信登录

本版积分规则

Archiver|手机版|AGB|Impressum|Datenschutzerklärung|萍聚社区-德国热线-德国实用信息网

GMT+1, 2025-11-16 00:57 , Processed in 0.093065 second(s), 29 queries .

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表