找回密码
 注册

Sign in with Twitter

It's what's happening?

微信登录

微信扫一扫,快速登录

查看: 438|回复: 0

地面物态新论

[复制链接]
发表于 2006-3-2 02:14 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册 微信登录

×
地面物态新论
陈叔瑄

    物质基本形态有高速低密度的场物质(简称场质),低速高密度高温的星质和密度介于两者之间低速低温的实物形态。地球表面物质大体是处于实物形态,实物本身又有固体、液体、气体三种状态。物质最基本形态是大于等于光速,但低于极限速度之高速平动的连续为主,量子为辅场质。但趋匀原理规定宇宙物质趋匀总是存在正反向平动,必转化为涡旋运动,因此涡旋运动与平动运动一样是物质基本运动状态。而涡旋运动必浓缩质量,成为天体、粒子、量子的存在基础。量子是高速的粒子,但它与连续场质物态界限很模糊。宇宙中物质平动运动趋匀必转化为涡旋运动,涡旋运动趋匀必浓缩质量而相互吸引靠拢,物质涡旋运动平衡趋势又必构成周期性变换运动与周围物质的交换而相互作用。
    平衡和对称趋势,使得涡旋体总是在其运动垂直方向两侧(即涡旋面上下两侧)质量分布对称,而构成近球形、铁饼形、竖椭球形等的趋势。稳定的太阳和地球是近球形涡旋体,虽然还在演变,仍然可以看成是一个基本平衡稳定系统。地球上的物体虽然跟着地球自转或公转运动,但物体之间通常处于相对平衡状态,即相对静止状态。地面物体不仅外部之间处于相对稳定平衡状态,而且内部原子、分子内外也处于稳定平衡状态。对已处于稳定平衡状态物体运动,需要用其它能量形式转化或外加作用力来迫使其改变状态或运动。地球内部是低速、高温、高密度的星质物态,外部是高速、低密度的物质态,而地球表面是低速、低温、中等密度实物状态。    如果极限速度的场质是物质基本形态,那么外加作用力,不可能使其增加速度或产生加速度,即不同场质之间几乎没有相互作用或不相干的,场质间叠加仍保持各自的运动状态。场质靠趋匀规律,使其物质内在连续性正反运动矛盾转化成涡旋运动而不是外力作用。但场质跟低速实物则有相互作用,主要是以万有引力场质流向涡旋体吸收或浓缩,而又以量子流形式辐射或弥散。因为量子是高速运动的粒子而不能呆留在涡旋体内而辐射。
    涡旋运动中心速度愈小,所浓缩质量密度愈大,且范围愈大,因为中心速度愈小,同角速度涡旋体达到光速旋转运动(等于或超过光速则转化为场物质)的半径愈大。在远小于光速条件下,涡旋体构成了天体或实物体。低速度和低角速度的涡旋天体具有很强的质量向心的趋势,同时具有很强的光热辐射,以趋于交换平衡,而且天体质量愈大,浓缩趋势愈强,即天体引力愈强,同时相反的量子流辐射也愈强。这是从低速涡旋运动矛盾条件下推出结论,并揭示了万有引力和天体热辐射的本质,表明辩证推理可以揭示更本质原理。
    涡旋运动中心质量密度不可能无穷大,因此涡旋中心必定移动的,具体移动条件不同所构成的运动状态不同。涡旋运动往中心浓缩质量,中心质量密度逐渐变大而中心速度变小,但质量密度不可能无穷大,绝对速度不可能等零的,因此宇宙没有绝对静止物体。有的涡旋运动角速度变小,然后中心速度由零再变大,构成了涡旋与平动周期性变换运动,这是量子运动基本方式,使量子由平动与周期性变换组成的运动。表明辩证推理很有效地推出很有意义的结论。
    涡旋运动浓缩趋势又使中心与其外周围质量或总能量密度分布不均,平衡趋势必引起向外弥散质量,以趋于总能密度均匀。涡旋体的浓缩与弥散平衡趋势而构成周期性交换运动,即构成涡旋体与周围空间场物质周期性交换。周期性交换必存在交换频率,交换频率一致或整数倍的两涡旋体才能构成同步交换的有效作用,尤其微观粒子交换频率很单纯,整数倍同步交换是其结构和作用的基础。可见,辩证推理可以一直进行下去,可得到一系列有意义的推论。
    涡旋中心高速度运动条件下,涡旋体内质量密度必然浠薄而处于场物质状态。如果物质系统平动能等于总能,此时平动速度达到极限速度,是光速的1.4倍。由于纯平动总是往涡旋运动转化,即不稳定的。纯涡旋也是不稳定的,在平衡趋势中,构成涡旋与平动周期性变换运动稳定状态,光速运动的周期性变换量子是稳定物质运动的极限状态。高速条件下,平动与涡旋矛盾运动构成周期性变换,使光量子具有变换能与平动能各占总能一半的物质系统。
    涡旋体的浓缩与弥散两者矛盾运动又引起了内部的微涡旋运动,这些微涡旋是构成涡旋体内质块、粒子、量子的基础,并使涡旋体角速度减少。这些微粒子中心又不可能绝对静止,必定移动,移动的不规则运动又构成热运动,使其具有一定温度运动状态或内能,并可向外辐射光热量子,即热量,以使浓缩质量与辐射光热量子总质量平衡。微旋化条件下推出涡旋体内质块、粒子、量子产生根源,推出天体内热运动和光热量子辐射形成根源,推出涡旋体愈大其角速度愈低的本质。
    涡旋面外的上下两侧空间是高速运动连续物质,在涡旋面低速运动下受到带动而产生趋向涡旋面运动和受到带动而趋往轴旋转运动,即涡旋面外上下空间物质的一点构成往涡旋面和往轴向浓缩趋势,两者趋势不同而构成竖椭球形、近球形、铁饼形等的涡旋体,中心速度和角速度愈低愈往铁饼形演变,如星团或星系的形态。可见,没有辩证推理而仅采用演绎或因果推理,上述的一系列结论无法推出,就不会产生全新理论体系。
    元素产生于物质的微涡旋运动,由于宇宙远离实物空间条件大体一致,产生质量相近同元素原子,不带壳粒中子和带一个壳粒元素氢原子最易产生,数量最多,其次带两个壳粒元素氦原子,再次是其它稳定的轻元素原子,如碳、氮、氧等,它们和宇宙场物质是天体涡旋运动成体的物质基础。地面轻元素主要来自宇宙,而重元素主要来自地球内部微涡旋趋于表面冷却形成的,可以说地幔不同层次是生成各种元素的“大工厂”。
    地球不例外地由涡旋运动中形成的,因此地核也是由趋心运动质块组成的,它撞击地壳使其分裂成若干大小板块。地球特有的环境条件,使其逐渐形成以氮、氧为主的大气圈,包围着地球表面外,同时逐渐形成以水为主的水圈,构成地面海洋和江河湖泊,加上地壳表面的岩石土壤圈等三圈基本物态,即地球表面存在气体、液体、固体的三种实物状态。在地球表面积分布着三分之二弱的海洋、三分之一强的陆地和包围地球表面氮氧为主大气层。
    水液体是地球表面最丰富实物状态之一,它总自动流向低洼处,而积累形成海洋。水在太阳照射下蒸发成水蒸气,由于水分子比氮分子、氧分子轻而上浮到天空的高处构成云雾,遇冷化成雨水或雪落到地面,流向低洼处,形成地面水不断地循环。地面水的不断流动和循环,为生成和繁荣生命体基本条件之一。在地面特有环境基础上,还进一步逐渐形成互相依存的微生物、植物、动物的生物圈,它们处于很薄的地面上。
    一、地层与矿物
    地球虽只是茫茫宇宙中一颗小小行星,但却是太阳系中有水、有空气的绿洲和有生命的,供人类生存的星球。人类对地球或地壳的认识,几乎同人类历史一样久远,从远古石器时代到青铜时代、铁器时代就通过采石、采矿和冶金等的实践活动,对岩石和矿物的地质环境有粗浅了解。人类的航海和海外贸易发展的剌激,促使天文、航海制图和大地测量技术发展。但地质学真正发展是在十八世纪产业革命之后的事,先有德国魏尔纳“水成说”和英国赫顿“火成说”之争,后来又有法国居维叶“灾变论”和“渐变论”之争,以英国赖尔《地质学原理》渐变理论巨著战胜灾变论,完成近代地质学体系。
    二十世纪初德国魏格纳提出大陆漂移说,英国赫斯根据古磁观测提出海底扩张说,为现代板块构造说奠定了基础,1968年勒皮顺首先提出,全球地壳是由六大板块组成的。实际上地球是宇宙天体一分子,形成过程与天体类似的,由涡旋运动浓缩而成的,核心形成大量质块,质块趋心运动,冲击地壳,使地壳破裂成众多的板块。由于它是太阳外层次的一颗特殊位置的行星,处于特有低温状态,表面主要靠太阳辐射的光、热能量吸收,尤其特有的大气层和大面积海洋,使它处于较恒温状态。
    《地球演变动力论》指出地球是近球形的涡旋体,结构大体分为地核、地幔、地壳三部分,地核是由高密度固态质块和液态岩浆构成的,质块具有磁性,在核心质块趋心运动挤压过程中,不仅引起地球磁场改变,地磁变化又引起地电变化,而且也是引起地震根源。地幔主要是液态岩浆和小质块,不同深度地幔温度不同,是产生的各种重元素和上层氧作用而构成各种氧化物,有的构成小质块漂移岩浆间,这些小质块移到地壳冷却时则构成岩石矿床。地壳由固体薄壳、液体海洋、氮氧为主的大气层构成的,固体薄壳在质块冲击下断裂成若干板块,这些板块可在地幔上滑动,形成了地面各种各样现象。
    灰尘这个问题看来很普通,人们天天见到,一天不打扫,就会积在桌面和其它家具上,几天不打扫,就会沉积一层厚厚的尘埃,没有什么深奥之处。人们都以为是地面尘土飞扬造成的,这固然能说明一些问题。但房子建在高山顶上,甚至船开到平静海洋中间停留一段时间,仍然有灰尘,这说明了什么问题?这只能说明灰尘主要来源不是地面尘土,而是地球绕太阳公转,并跟太阳一起在宇宙中运动,宇宙物质落入地面的结果。这样才能解释山顶和海洋上的灰尘问题,才能解释遍及地球表面沉积地层。地壳除了地幔形成重元素外,而轻元素主要来自于宇宙。
    要证明灰尘主要来自宇宙,还可以在运行大气中的火箭或其它人造天体表面是否同样存在灰尘。要证明每天落入地面灰尘沉积是地层形成主要原因,可以在若干山顶设置标准面积干净表面的灰尘量,量度计算后便可得出整个地球表面每天灰尘总量。地层还有由地幔涌现到地面岩浆形成的火成岩和地幔小质块移到地面构成一定类型岩石矿床,地面特有大气层和大面积海洋构成了风、雨、冰雪等变化无常的气候,雨水也会冲刷一些矿物而沉积在地面低洼处,形成沉积岩或沉积矿床。
    法新社华盛顿1998年9月12日电,美国航天局援引“环火星勘探者”探测器收集的数据说,火卫一的日间温度为零下4摄氏度,而夜间温度陡然降至零下112摄氏度。对火卫一表面温度的测试结果显示,这颗卫星被一层至少一米厚的极其细小的颗粒覆盖。这可间接证明太阳系所有行星和卫星的表面被宇宙每时每刻落入的尘埃所覆盖,包括地球表面尘埃。
    埋藏在南极冰原下的有关冰期、火山喷发、风和雨发生划时代改变的记忆。这些记忆以尘埃粒子、稀有分子以及冰本身特性的形式存在着。隐藏在其中的数万年的气候变迁历史昭示在我们面前。内华达沙漠研究所的冰川学家在南极打钻,一直钻到冰原的底部,从一条长1000米的垂直冰洞中取出一系列冰芯。气候记录表明,人类8000年的文明史是在一个气候异常稳定温暖的时期发生的。人类进入工业和信息时代150年中气候温和更加明显。但冰原证据表明地球气候有突变的时候,若发生气候突变将严重影响人类生存。
    《地球演变动力论》一文指出,地球与其它星球一样都是涡旋体不断吸收其周围空间物质中浓缩而成的,即地球随太阳系运动过程中不断吸收周围空间的陨石、尘粒、场物质而生成地层。地球与其它星球一样在交换运动中内部微旋化,构成以质块为主的地核和以岩浆(包含一些小质块)为主的地幔,并在微旋化中构成元素原子。地幔的不同深度温度不同,所微旋化粒子不同,一般愈上层生成愈轻的元素原子,下层元素原子与上层氧元素原子化合成各种氧化物,停留在地壳中。某些类型元素构成的小质块移到地壳而形成的是某些类型矿藏。
    物理探矿利用地震波、重力场、磁场等地球的各种物理属性取得内部情况,这类探矿由于电子计算机技术的全面应用取得了飞跃发展。用地震波探矿方法,即在地表或海上用炸药或压缩空气等造成人工的地震波传入地下,遇到不同介质就会反射回来,并记录之。一般地说,浅界面反射波比深界面来的早,地下构造从浅部到深部受地震波形的时间系列显示出来,可将五千米以内的复杂褶折的地层情况清楚反映出来,再加上有某种矿藏的地方,多多少少被雨水冲扫遗留在地面裸露一些或在附近水流带走留下砂石,这些是普查矿藏的重要方法。在此基础上,再用钻探方法取样来断定实际矿藏成分、质量、分布、范围等。
    地球化学是研究地球以及太阳系化学成分、化学演变的理论及其方法,通过实验总结出地壳各种元素平均比值。由于地球温度周期性演变,地幔温度也在演变,加上不同深度温度不同,所生成元素及其质块元素各不相同。这些质块迁移到地壳则成矿藏。地球化学探矿是通过探测矿体附近地层出现化学特征来查找埋藏的矿床,利用土壤取样、水流沉积物取样、空气探测技术线索来查找矿藏的,如在溪水中发现某些矿藏成分,可以推断其上游可能有此矿藏。最后钻探取样分析来确定矿藏成分和组成结构。
    航空与卫星摄影、红外扫描、机载测视雷达等遥测技术发现了新现象,如地球到太阳方向上,离地球十至二十个地球半径处有巨大冲击波的太阳风。又如地球周围的大区域地磁层由于受太阳风而压向背面,拖着很长磁尾的磁场分布。这类空间测量可获得地形、地质、土壤、水系、植被和其它现象,如地磁、地电、地光热等的详细资料。许多资料对浅矿藏估计和地震预测很有用的,并促进地学的进步。这也是普查矿藏的一种方法。
    地层了解最基本应用技术是挖掘和钻探技术,它通常在地面各种地形测绘和地质普查基础上进行的,盲目钻探或挖掘会造成极大的浪费,成本大大提高。钻探选点和布局很重要,选得好和布局合理,可以做到一次成功。但这跟设计者的地质专业知识和经验密切相关的,专业知识愈精通和实践经验愈丰富愈有利于正确选点与布局。钻探和挖掘工具设备愈先进愈能钻得深且速度快成本低。机械化、电气化及其它技术是目前提高开采矿藏效率基本方法。
    挖掘工具设备也愈来愈进步,从锹、铲等手工工具到风钻、电钻机电工具,加上爆破技术等进步,效率大大提高。如挖煤技术从手工工具到机电化设备不能不是一种进步,但这种进步没有什么本质地提高,因为每挖进一尺煤炭都要用木材顶住,非常浪费宝贵木材。最根本办法是将煤矿的煤在地下液化和气化,这项技术若能低成本地实现就会带来极大的经济效益。无机矿藏仍然用机电设备和爆破技术、顶崩支架技术逐步一层面一层面地挖掘的。
    二、地面实物状态
    恒星体外层次的天体往往是表面低温的行星体或卫星体,如地球表面是低温的实物体,它有以岩石和土壤为主固体状态,有以江河湖海和大洋等水流为主的液体状态,有以氮氧为主的大气层的气体状态,谓之实物三态。它不同于连续为主的场物质状态,也不同于高温的高密度的粒子性模糊的星质状态,如不断辐射量子流的流动的岩浆状态,而是由低温的粒子性明显的各种元素原子与分子组成的并构成一定形状的实物体。
固体的粒子间是靠壳粒交换而联结成体的,通常处于结晶状态,即依靠原子或分子间壳粒交换。由于原子结构不同而使其壳粒交换数量、距离、方向、分布等不同,并结成各式各样晶面的晶体。有的晶体的壳粒与原子核交换较为松懈,壳粒易在物体中移动,而形成导体之类的物体,如金属体。有的晶体的壳粒与原子核较为紧密,壳粒难以离开原子核,而构成绝缘体。壳粒松紧程度介于两者之间的为半导体。即使不定形,甚至粉沫状的固体,也是由大量内部粒子间壳粒交换的颗粒构成的,仍然离不开壳粒交换方式。
    液体的粒子间主要靠场质交换而联结成体的,而具有流动性、易断性、易随容器成形,如水。不同实物以不同温度溶化成液体,即具有不同的溶点,溶化液体过程中,要使固体内粒子的壳粒交换脱离而变成场质交换,通常需消耗能量,称为溶化潜热,除少数实物的分子排列中间保留大量空隙而液化时才缩小体积,绝大多数实物液化膨胀体积。水溶液易与许多固体粒子进行场质交换,而拉开固体粒子,即溶解溶质。液体粒子与容器壁场质交换,若容壁交换强于液体内部交换,则表面边缘弯向容壁,如水与玻璃容器,否则弯向液体,如水银与玻璃容器。
    气体的粒子几乎独立的,它主要靠重力或容器封装成体的,粒子间空隙较多,因而易压缩、易分离、易流动,如地面的大气层。不同液体气化的温度不同,气化过程需吸收能量,使其场质交换脱离而成独立的粒子,称为气化潜热。气化过程同时膨胀体积,实际上又是释放能量的一种方式,从而气化潜热只是释放能量的引子。也就是说,能量释放往往需要先消耗一些能量作引子,如点火引子燃烧石油释放能量。因此潜热实际上是释放能量的引子,这样气体是液体,液体是固体的能量释放方式,而实物体转化为场质是能量释放的彻底方式。
    按质能原理,实物体所具有的总能量与质量成正比,但实物体内的能量是各种各样能量叠加,其整体运动方式则构成机械运动,如平动、转动、振动等运动方式具有矢量性,称为矢能,它只是实物体总能的一部分。势能或位能虽然是整体的标能,只是在重力作用下的相对位置有关的一种机械能量形式。标量参量定义的能量为标能,如温度定义的内能,交换频率定义的交换能,变换频率定义的变换能等。而交换能又有不同层次的交换能,如壳粒交换、原子交换、核交换等,不同的交换则构成不同的作用方式。
    粒子通常具有变换能与交换能,可以相互转化,而变换能与平动能成正比,平动能达到光速时,只剩下平动能和变换能,即构成高速粒子的量子。可见随粒子速度提高,相应粒子的交换能转化为变换能,反之粒子制动,变换能转化为交换能。因此粒子的加速可以转化为量子,量子的制动可以转化为粒子或被粒子吸收。粒子低速运动具有交换能,使其相互作用而联结成实物体。因此实物体是各种各样的能量叠加而成的,这些能量之和就是总能。
    实物固体随整体速度增大或温度提高就会往液体、气体,甚至场质状态转化,即质量密度愈小方向和运动叠加愈单纯方向转变。极限速度时质量密度最小,运动形式只是单纯的平动运动,但它因趋匀而总是趋于正反运动状态,即处于不稳定状态。高速运动的稳定物质状态是仅有平动和周期性变换运动的量子,也就是说稳定的物质系统至少存在两种以上能量形式。密度愈小,运动愈单纯,即能量愈处于释放状态。质量密度对应着总能密度,密度愈小,愈近场物质状态。
    不过真正可作为机械动力是通过实物体气化来实现的,因为液固体转化气体时,通过减少实物密度或膨胀体积来推动机械运动。爆炸过程是一种固液体气化的急剧方式,而燃烧氧化过程是一种固液体气化较平缓方式,蒸汽产生过程是液体气化更平缓的方式。可见物态变换,尤其气化变换所引起的实物密度减少,即体积膨胀特性可被用作机械动力设计。
    宏观运动与微观运动间关系可分为三类:一类为微观粒子是宏观物体的同一性质的最小单位,如分子、原子等;二类为微观或部分是宏观整体的有机组成的,如生命体和具有一定功能的机械体;三类宏观现象是微观运动的统计关系,如宏观温度是微观粒子动能平均值,即
T=mυ2/2=Eυ
其中m为微观粒子质量,υ为平均速度。此外均方速度υ2,最可机速度υp等都是用来描述速度统计性质的。又如宏观压强P是微观粒子动能平均值乘以粒子数密度n,即
P=nmυ2/2=nEυ
    在宏观状态中的各微观粒子运动状态往往是随几的,如气态粒子运动能量或速度量值和方向都是随几的,但有一定分布,有个最可几的能量或速度,比其大或小粒子数或几率按指数变小。温度愈高,其最可机的速度愈大,相应平均速度和均方速度也愈大。又由于同一元素众原子生成和存在环境条件各不相同,原子量也是有一定分布,虽然一原子有稳定的壳层粒子的轨道,但各原子之间则有偏离,在宏观上具有一定分布,从而存在一定统计性质。但又因原子核与壳粒交换整数倍才是稳定的,构成了定态波函数,统计关系不同于热力学统计性质。。
  大数量统计关系通常有个分布曲线,大体可分为三类:麦-玻的热力学统计,具有不规则热统计性质;玻-爱具有整数自旋的对称波函数,如光子或某些原子核等的统计;费-狄非对称波函数,如壳粒子、质子、中子等的统计。它们统一表达式为
ni=1/(e(E-χ)/kT+δ)
其中为ni粒子数几率密度,Ei为粒子能量,χ为化学势,T为温度,δ可以取0、1、-1分别表示上三种统计分布。当χ=0,δ=0时,为麦-玻统计。当δ=1时,为玻-爱统计,剩下一种δ=-1为费-狄统计。
    三、热力学三定律
    热力学的第一、二定律实际上是《物性论》第一、二基本原理在地面物态的具体的应用。而真正的第三定律是上述物态观念引伸出来的规律。下面将对这三条定律作些具体阐述。
    系统对外部物体所作的功A(反抗外力作功)等于
Q=ΔU+A
即热力学第一定律可表述为传递给系统的热量Q变成系统内能的增加ΔU和系统反抗外力所作的功A。它是能量转化守恒定律的具体描述。内能是由温度定义的一种与物态有关的能量形式,而温度是分子平均动能。
    热量Q作为量子场质也具有质量和能量,被分子所吸收则转化为分子动能,相应地交换能转化为变换能,才能使分子从交换状态脱离开来,成为独立的气体分子。这个分子动能使分子间壳粒交换为主的固体和场质交换为主的液体变换成独立分子的气体状态。气体分子从交换中脱离开来,实际上是能量释放方式和提高分子平均动能,总能量密度降低,通过膨胀体积对外作功,分子平均动能增加就是物体内能或温度的提高。即热量可用来变换物态(气化)和提高内能(或温度)。
    《物性论》的质能关系原理指出:物质是连续的、可入的(可线性叠加的)、不灭的和运动变化的。而质量和能量分别是物质量与运动量的量度,两者在量值上成正比。包含了物质不灭定律和能量守恒定律,此两定律是质能关系原理推出的具体形式,也可以说热力学第一定律是能量守恒定律的具体形式,也是质能关系原理的具体应用。正因为如此,热力学第一定律应扩大为第一物态原理
Q=ΔU+ΔE+A
其中ΔE为交换能改变量,即热量除可转化为内能或对外作功外,一部分可用以改变物态或动能形态,同时迫使交换能转化为变换能形态。
    热量自动地从高温物体状态流向低温物体状态过程,而这一过程不可能自动地从低温物体流向高温物体,即温度只能自动地趋于平衡,不可逆过程。正因为如此,热机所得热量和可能全部作机械功,即热机热量必有部分自动流向周围较低温环境中去,使热机效率不可能百分之百。这是热力学第二定律表述。
    热力学第二定律实际上是《物性论》趋匀原理在热力学领域的具体应用。趋匀原理指出:物质系统存在分布不均匀、不平衡、不对称的任一运动、状态或结构总是自动地趋于均匀的、平衡的、对称的运动、状态或结构,且具有保持均匀的、平衡的、对称的特性,直到外部条件迫使其改变为止。其具体应用于分子不规则运动平均动能,即温度不平衡时所产生的热量子(热量)运动趋势的结果就是热力学第二定律。
    实物固体、液体、气体的三种状态不仅交换方式不同,而且内能或温度所表现的方式和热量传递方式也有所不同,固体和液体多半以光热量子辐射方式,也有采用传导方式来传递热量,而气体则多半以对流方式来传递热量的。正因为气体以对流方式为主和体积膨胀,才能使气体容易对外作功,推动热机机械运动。而热机一方面向外辐射热量,另一方面排出的废气同时带出热量,使热机效率不可能百分之百。
    热力学第二定律趋于温度或内能平衡,可扩大为包含内能和其它能量趋于平衡的不可逆过程,如外部条件一定时,地面具体物体总是处于平衡稳定状态,直至外部条件变化而迫使其改变为止,称为第二物态原理。由于实物体外部条件总是处于一定状态,地面任何部分或物体都不可能达到绝对零度,因为周围高于零度物体必然自动流向零度物体,以趋于平衡,所以绝对零度达不到。原热力学第三定律实际上是第二定律的特殊情况的引伸。
    热力学真正第三定律应该是三物态之原理,即实物的固体是通过其内部分子间的粒子交换成体的,液体是通过其内部分子间场质交换成体的,气体是通过重力或容器约束成体的,三者之间可通过热量传递实现互相变换,即实现交换能的变换。固体和液体变换为气体过程是实物能量释放或体积膨胀或交换能密度减少的过程。低速宏观物体的交换能可定义为
E=hΔν=hν。(1-υ2/2c2)
其中Δν是交换频率范围,当光速时交换频率范围为ν。/2,极限速度时交换为零,即物质之间不相干的。愈远离光速高低速,愈不呈现波动性。低速实物体熔化和气化过程实际上是交换能转化为动能和变换能过程,从而交换能密度减少或能量释放。
    低速低温实物体交换能变换所需热量实际上转化为分子动能,而动能增加相应地迫使交换能转化为变换能,即交换作用减弱,相应交换能密度减少。熔化、气化过程是吸收热量过程,分子运动更自由或动能增加和交换能转化变换能的过程,虽然这一过程温度不变或平均动能不变(温度不变),而物态改变或交换方式改变而吸收热量过程。反之固化、液化的过程是辐射热量的过程,是分子交换方式改变而辐射热量的过程。熔化的温度称为熔点,气化的温度称为沸点。不同物体分子因壳粒脱离趋势程度不同而使其熔点和沸点不同,壳粒愈难脱离则熔点和沸点通常愈低,即愈处于气态。气化过程更多地采用燃烧氧化过程,将液体或固体的分子转化为气体的分子,以释放能量。
    宏观实物体属于低速系统,不呈波动性是因交换频率很杂,各种交换频率的叠加的结果。同一温度(同一内能)的不同物态因交换方式不同,迫使其运动方式不同,气体分子平动能为主变换成液体分子转动能为主,液体分子转动能为主变换成固体分子振动能为主的运动方式,但温度不变时其平均分子动能一样。温度变化时,分子平均动能也跟着变化,温度愈高,即吸收愈多热量而使其平均动能愈大。可见物态变换(相变)过程的热量吸收或辐射主要用于交换形式变换,而同一物态下热量吸收或辐射主要用动能的增减。热量可转化为分子动能或交换形态,使其交换能和动能密度改变。    能密度减少是释放能量表达方式。物体分子交换形态变化相应着动能形态的变化,并影响其体积或密度的变化。物体质量密度或总能量密度反映了分子交换方式和运动状态。同一温度不同物体处于不同物态,如常温下氧气、氮气处于气体,水则处于液体,岩石、土壤则处于固体,这决定于分子、原子的结构。一价、二价元素原子易实现壳粒交换而在常温下联结成固体,八价惰性元素难以实现交换而处于气体状态。当氦在接近绝对零度时才液化,处于场质交换状态,且氦原子几乎失去不规则的热运动,完全靠交换场质直接作用而形成超流体和超导体现象。
    四、固体材料生成原理
    古代就已经有了烧结陶瓷、冶炼金属等技术,只不过这种技术不断提高、更新和扩大,从小型冶炼炉小批量生产开始到大型冶炼高炉大批量生产,并且材料质量和性能也不断提高。如小高炉炼铁不外将铁矿石、石灰石、焦煤混合在高温下熔化,而分离出铁和其它杂质,流出高温铁水在空气中逐步降温就成铁。
    液体可以是固体物质熔化,也可以是固体溶解于水或其它液体,但内摩擦或粘度各不相同。对于粘度较低的流动液体落差可作动力应用,如水力发电站等,静止液体可作浮力、压力、毛细等控制应用,如产生大压力的液压机。液体,尤其水常作为化学反应的溶液,以便溶解固体并加热,以实现化学反应。有的液体,如石油是各种烷烃分子的混合物,而烷烃分子碳核愈少或愈轻熔点、沸点愈低,从而可以通过蒸馏塔的温度控制来分解,如熔点由低到高可分为汽油、煤油、柴油、沥青等用温度控制分离之。
    利用溶液溶解或燃烧熔化或聚合凝固等性能以实现结晶。结晶过程也可以通过一定的压力、温度和其它条件控制来实现的。如常温、常压下溶液中溶解了某种溶质,只放入微小的母晶,母晶表面的内外因交换不平衡,而有向溶液中接收溶质以趋于交换平稳,新的表面又出现新的不平衡,再趋平衡而逐层结晶。这类结晶称为溶液结晶类型。
    另外一些聚合凝固结晶,如水泥、砂、小石和水拌成泥浆是壳粒交换和场质交换混合方式,加上钢筋支撑而倒入模中,随着水的蒸发,特殊壳粒交换方式逐渐代替场质交换,变成非常坚固模的样子固体。不同配方和形成过程的材料具有不同性能和功能材料,所构成的模质量也不太一样,可以用于不同场合。粘合过程的原理类似,也是粘合剂水分蒸发过程就是壳粒交换代替场质交换过程而粘合一起。
    水及其它溶液因液体分子间场质交换,可以将某些固体颗粒拌上液体,使分子颗粒或各分子间既有壳粒交换又有场质交换状态,构成可塑性固液体状态,如泥土拌上适量水后可以构成可塑性材料,水分较多的材料较湿润柔软,适当柔软的可塑性材料可制成各式各样模型,凉干过程就是水分子蒸发掉过程,泥土分子间的壳粒交换逐渐代替水的场质交换,而使形状比较固定。若经高温烧结,壳粒交换更多更紧密而更加牢固。
    烧结过程不同于结晶过程,它利用像研磨粉碎泥土拌上水成粘稠状,制成砖瓦土杯,凉干后放进窑炉中烧结。烧结过程把水分子与泥土分子壳粒及场质交换方式,通过水分子蒸发后化成泥土分子的壳粒交换连结成固定的砖瓦形状。陶瓷烧结过程情况类似,但瓷土或陶土材料与普通泥土的分子成分结构不同,烧结后的分子间壳粒交换递传方式不同,构成的硬度、韧性、紧密性等都不同于砖瓦。有此无机物捣碎加上水成为可塑性材料,如泥土、瓷土、水泥和上水就成为常见可塑性材料。
    陶瓷土捣碎变成分子团颗粒,愈细愈近分子颗粒,加上水搅拌,使水分子的壳粒或交换场质尽可能跟瓷土颗粒壳粒或周围场质交换连结成含液体的固体,构成粘稠状陶瓷土材料。可塑成各种各样碗、盘、缸之类器具和各种艺术雕塑模型,在窑炉有控制地加热进行烧结和退热。在加热的过程是将水分子和某些成分原子蒸发脱离器件,化成陶瓷土分子颗粒间壳粒交换,便成为定形的碗、盘、缸等器具或艺术造型的产品。
    高性能陶瓷与传统陶瓷、玻璃、耐火砖等制品不同,具有高强、高韧、高硬度、耐高温、耐磨和耐腐蚀等特性的结构材料,也可作为能量转化、信息传递、环境传感(如热敏、光敏、湿敏、溴敏、气敏和磁敏等)的功能材料。陶瓷主要成分是氧化硅、氧化铝、氮化硅、碳化硅等,掺入不同杂质和烧结工艺过程不同所构成的陶瓷性能和功能就不同,以便应用于不同场合。这是因为不同杂质和烧结过程来改变氧化硅、氧化铝、氮化硅或碳化硅等分子之间壳粒交换方式,如交换间距、交换频率、交换角度、表里交换强度差异程度、交换传递经历(所交换传递的不同分子)过程、交换场质分布等不同,所构成的性能和功能就差别很大,以至这个古老工艺变成了各国关注的高新技术。
    小高炉炼铁不外将铁矿石、石灰石、焦煤混合在高温下熔化,而分离出铁和其它杂质,其交换方式和比重、流动性不同,流出高温铁水在空气中逐步降温就成铁,剩下杂质渣待铁水流出后留在底部。铁水中碳和其它杂质含量不同,冷却速度不同性能也不同。即冶炼条件和过程不同是构成金属元素原子间壳粒交换方式和状态不同,而形成延展性、韧性、硬度、结晶态、导电性、熔点等性能不同,如铁水迅速冷却会使铁原子间壳粒交换只在相邻原子间交换,变得坚硬而脆生铁材料。如果继续在转炉里冶炼,可以改变碳、硫含量,也就改变铁原子之间壳粒交换分布和方式,从而改变铁材料的性能。
    金属材料的元素重新组合和控制冶炼方法是人类取得各种各样性能材料的基本应用技术,如不锈钢是钢铁为主,并配合一定比例的铬和若干其它元素重新组合成耐腐蚀合金。含铬12-30%和碳0.01-1.0%的合金基本上属于不锈钢范围。钢铁之所以生锈主要是氧化,尤其周围含水或水气更容易氧化而产生氧化铁之类的分子,即在常温下铁元素原子易与氧元素原子的壳粒交换构成氧化铁之类分子。铁铬合金的原子间壳粒交换比铁氧原子间交换更强,氧原子难以从铁铬合金中拉开而难以形成氧化铁之类分子,因此不易生锈。
    合金的冶炼加工过程不同影响着元素原子间的壳粒交换方式形成,加上配置成分比例不同,更影响着原子之间壳粒交换联结方式不同,其所产生的物理和化学性质或性能各不相同的,甚至差别很大。如烧结碳化钨加钴的结合剂的合金是非常耐磨和耐蚀,广泛用其做机床刀具、金属铸模和其它零件等。如碳化钨和镍相互熔合可构成高强度、高韧性,但比较脆硬材料。为了不使碳化钨结晶质地脆硬缺点而加入钼金属,变成硬韧材料,可用于制造保险柜、防盗门等各种设备。
    冶炼过程实际上是通过金属壳粒交换方式的固体高温时转变为场质交换方式的液体,而其它物质高温时转化为气体或杂质固体,来分离出铁水。冶炼加工过程不同影响着元素原子间的壳粒交换方式形成也不同,加上配置成分比例不同,更影响着原子之间壳粒交换联结方式不同,所产生的物理和化学性质或性能各不相同的,甚至差别很大。如将铁在高温下烧的通红,铁原子周围的壳粒移动更易更自由,甚至部分处于场质交换,经过锤打,使原子间更靠近,其周围不仅最外层壳粒,而且较里层壳粒也参与交换而连结成体的,经过反复煅烧和锤打后内层壳粒参与的原子愈来愈多,甚至加入某些材料,更增加内层壳粒参与交换连结,构成韧性和硬度都很高的固体材料。
参考资料:
1、《物性论-自然学科间交叉理论基础》 陈叔瑄   厦门大学出版社1994年12月出版
2、《物性理论及其工程技术应用》  陈叔瑄   香港天马图书有限公司
2002年12月出版
3、《思维工程-人脑智能活动和思维模型》 陈叔瑄    福建教育出版社1994年6月出版
4、《实用化学手册》  张向宇等编   国防工业出版社1988年4月出版
5、《论化学基础问题》  陈叔瑄    《科学(美国人)》中文版2000年8期
(发表于《跨世纪中国改革开放的理论与实践》)
Die von den Nutzern eingestellten Information und Meinungen sind nicht eigene Informationen und Meinungen der DOLC GmbH.
您需要登录后才可以回帖 登录 | 注册 微信登录

本版积分规则

Archiver|手机版|AGB|Impressum|Datenschutzerklärung|萍聚社区-德国热线-德国实用信息网

GMT+1, 2026-1-12 04:41 , Processed in 0.073547 second(s), 28 queries .

Powered by Discuz! X3.5 Licensed

© 2001-2026 Discuz! Team.

快速回复 返回顶部 返回列表